Modulverantwortlicher: Prof. Franz Baader (Fakultät Informatik)
Dieses Modul ist Bestandteil folgender Studiengänge:
Lehrveranstaltung | Modul | SWS | Sprache | Dozent | Institut | Art | Tag | DS | Raum | Woche |
---|---|---|---|---|---|---|---|---|---|---|
Complexity Theory | CMS-LM-ADV , CMS-LM-MOC , INF-B-510 , INF-B-520 , INF-BAS6 , INF-VERT6 , MCL-KR , MCL-PI , MCL-TCSL | 4/2/0 | englisch | Prof. Krötzsch | Theoretische Informatik |
V V Ü |
Dienstag Montag Mittwoch |
2. 2. 3. |
APB/E005/U APB/E008/U APB/E005/U |
wöchentlich wöchentlich wöchentlich |
Finite and Algorithmic Model Theory | CMS-LM-ADV , CMS-LM-MOC , INF-B-520 , INF-BAS6 , INF-PM-FOR , INF-VERT6 , MCL-KR , MCL-PI , MCL-TCSL | 2/2/0 | englisch | Prof. Rudolph | Künstliche Intelligenz |
V Ü |
Mittwoch Dienstag |
5. 4. |
APB/E007 BAR/0218/U |
wöchentlich wöchentlich |
Foundations of Semantic Web Technologies | CMS-LM-ADV , INF-B-510 , INF-B-520 , INF-BAS2 , INF-BAS6 , INF-E-3 , INF-PM-ANW , INF-PM-FOR , INF-VERT2 , INF-VERT6 , MCL-KR , MCL-TCSL | 2/2/0 | englisch | Dr. Arndt | Künstliche Intelligenz |
V Ü |
Donnerstag Montag |
5. 3. |
APB/E006 ZEU/0147/Z |
wöchentlich wöchentlich |
Fuzzy Description Logic | CMS-LM-ADV , CMS-LM-AI , INF-B-510 , INF-B-520 , INF-BAS2 , INF-BAS6 , INF-PM-FOR , INF-VERT2 , INF-VERT6 , MCL-AI , MCL-KR , MCL-TCSL | 2/2/0 | englisch | Dr.-Ing. Borgwardt | Theoretische Informatik |
V Ü |
Mittwoch Freitag |
2. 4. |
APB/E005/U APB/E005/U |
wöchentlich wöchentlich |
Integer Programming | CMS-LM-ADV , CMS-LM-AI , INF-BAS2 , INF-BAS6 , INF-LE-MA , INF-VERT2 , INF-VERT6 | 3/1/0 | englisch | Dr. Di Gregorio | Künstliche Intelligenz | Ü | Montag | 4. + 5. | APB/E010/U | wöchentlich |
Knowledge Graphs | CMS-COR-KM , INF-B-510 , INF-B-520 , INF-BAS2 , INF-BAS6 , INF-E-3 , INF-PM-ANW , INF-PM-FOR , INF-VERT2 , INF-VERT6 , MCL-KR , MCL-TCSL | 2/2/0 | englisch | Prof. Krötzsch | Theoretische Informatik |
V Ü |
Dienstag Dienstag |
3. 5. |
APB/E005/U APB/E005/U |
wöchentlich wöchentlich |
Modal Logic | CMS-LM-BAS , INF-B-510 , INF-B-520 , INF-BAS6 , INF-VERT6 , MCL-TCSL | 2/2/0 | englisch | Dr. Piribauer | Theoretische Informatik |
V Ü |
Dienstag Mittwoch |
4. 6. |
APB/E005/U APB/E005/U |
wöchentlich wöchentlich |
Model Checking | CMS-LM-ADV , CMS-LM-MOC , INF-B-510 , INF-B-520 , INF-BAS6 , INF-VERT6 , MCL-TCSL | 4/4/0 | englisch | Prof. Baier, Dr. Klüppelholz | Theoretische Informatik |
Ü Ü |
Donnerstag Freitag |
2. + 3. 2. + 3. |
APB/E005/U APB/E005/U |
wöchentlich wöchentlich |
Theorie der Gewichteten Baumautomaten | INF-04-FG-TP , INF-B-510 , INF-B-520 , INF-BAS2 , INF-BAS6 , INF-PM-FOR , INF-VERT2 , INF-VERT6 | 4/2/0 | deutsch | Prof. Vogler | Theoretische Informatik |
V V Ü |
Donnerstag Montag Donnerstag |
2. 3. 3. |
APB/E006/U APB/E006/U APB/E006/U |
wöchentlich wöchentlich wöchentlich |
Unification in Modal and Description Logics | CMS-LM-ADV , CMS-LM-AI , CMS-LM-MOC , INF-B-510 , INF-B-520 , INF-BAS2 , INF-BAS6 , INF-PM-FOR , INF-VERT2 , INF-VERT6 , MCL-AI , MCL-KR , MCL-PI , MCL-TCSL | 2/2/0 | englisch | Prof. Baader, Dr. Fernández Gil | Theoretische Informatik |
Ü Ü Ü |
ZVZ Dienstag Mittwoch |
6. 5. |
APB/E005/U APB/E005/U APB/E005/U |
wöchentlich wöchentlich wöchentlich |
Tag/Raum
Wochen
Semester im Sinne der Prüfungsordnung. Die Module werden mit dem jeweiligen Fachsemester ausgewiesen, in dem sie beginnen - Mehrsemestrige Module werden demzufolge mit einem ggf. niedrigeren Fachsemester ausgewiesen als die Studierenden tatsächlich sind..
Master-Niveau Die Lehrveranstaltung ist an Master- bzw. Diplomstudenten im Hauptstudium gerichtet. Diese Angebot ist optional und nur für fortgeschrittene Studenten empfohlen.
Module Zusätzlich zu den Modulen aus Bachelor/Master/Diplom Informatik, Medieninformatik und Informationssystemtechnik gibt es noch folgende Module für andere Studiengänge
und folgende Pseudo-Module für ältere Studiengänge und Sonstiges
Prüfungen Art und Dauer von Prüfungsleistungen sind den Modulbeschreibungen zu entnehmen. Ausnahmen hierfür sind die Module INF-AQUA, INF-B-510/20/30/40, INF-B-610 und INF-D-940 - hier wird die Prüfungsform der jeweiligen Lehrveranstaltung explizit angegeben. Mögliche Prüfungsformen sind: